Population-specific effects of ocean acidification in the Olympia oyster

Author:

Spencer Laura HORCID,Silliman KatherineORCID,Roberts StevenORCID

Abstract

AbstractPopulations of marine species that respond differently to ocean acidification offer natural reservoirs of biodiversity that can be leveraged for conservation efforts and to sustain marine food systems. The molecular and physiological traits associated with tolerance to acidification must first be identified. This study leveraged oysters from three phenotypically distinct populations of the Olympia oyster,Ostrea lurida, but that were bred and reared in common conditions for four years. We assessed their growth, reproductive development, and transcriptional response to acidification within and across generations. Responses reveal energetic trade-offs that reflect unique physiotypes previously observed among populations. The population with the slowest growth but high survival rates, oysters from Dabob Bay, mounted the largest transcriptional response to acidification without effects to growth and reproduction. A moderate response was observed in the population with fastest growth rate but lowest fecundity (Fidalgo Bay). Oyster Bay, the population with highest fecundity but lowest survival rates, did not respond at the transcript level. Oyster Bay was also the only population for which acidification negatively affected growth and reproductive development. While exposure to acidification did not affect gene expression in the next generation’s larval stage, it did result in larger larvae in the Oyster Bay population, which could partially alleviate negative effects of acidification in the wild for that population. Given the distinct transcriptional response of the Dabob Bay population to acidification and its high survival rates in previous studies, we then identified genes that were uniquely expressed in Dabob Bay oysters compared to the other populations. Genes involved in antibacterial and antiviral processes, metabolism, growth, and reproduction were uniquely expressed in Dabob Bay, and many similar functions were identified in both adults and larvae, which provides insight into the mechanisms behind a stress-tolerant oyster population. The population-specific physiotypes and responses to acidification illustrate the diversity of physiological strategies inO. luridathat balance the energetic demands of growth, reproduction, cellular maintenance, and offspring viability. Taken together this study reveals that there are distinct physiotypes among marine invertebrate populations on small geographic scales with implications for species resilience to acidification and other environmental stressors.

Publisher

Cold Spring Harbor Laboratory

Reference94 articles.

1. Abele, D. , Vazquez-Medina, J. P. , & Zenteno-Savin, T . (2011). Oxidative Stress in Aquatic Ecosystems. John Wiley & Sons.

2. Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

3. Comparison of laboratory rates of predation of five species of marine fish larvae by three planktonic invertebrates: effects of larval size on vulnerability

4. Genetic Variation in the Timing of Gonadal Maturation and Spawning of the Eastern Oyster, Crassostrea virginica (Gmelin);The Biological Bulletin,1991

5. Bayne, B. L . (2017). Biology of Oysters. Academic Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3