Rewiring of the phosphoproteome executes two meiotic divisions

Author:

Koch Lori B.,Spanos Christos,Kelly Van,Ly TonyORCID,Marston Adele L.ORCID

Abstract

AbstractThe cell cycle is ordered by a controlled network of kinases and phosphatases. To generate gametes via meiosis, two distinct and sequential chromosome segregation events occur without an intervening S phase. How canonical cell cycle controls are modified for meiosis is not well understood. Here, using highly synchronous budding yeast populations, we reveal how the global proteome and phosphoproteome changes during the meiotic divisions. While protein abundance changes are limited to key cell cycle regulators, dynamic phosphorylation changes are pervasive. Our data indicate that two waves of cyclin-dependent kinase and Polo (Cdc5Polo) kinase activity drive successive meiotic divisions. These two distinct waves of phosphorylation are ensured by the meiosis-specific Spo13Meikinprotein, which rewires the phosphoproteome. Spo13Meikinbinds to Cdc5Poloto promote phosphorylation of a subset of substrates in meiosis I containing a newly identified motif, which we define as the Spo13Meikin-Cdc5Poloconsensus phosphorylation motif. Overall, our findings reveal that a master regulator of meiosis redirects the activity of a kinase to change the phosphorylation landscape and elicit a developmental cascade.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3