Androgen blockade primes NLRP3 in macrophages to induce tumor phagocytosis

Author:

Chaudagar Kiranj,Rameshbabu Srikrishnan,Mei Shenglin,Hirz Taghreed,Hu Ya-Mei,Argulian Anna,Labadie Brian,Desai Kunal,Grimaldo Sam,Kahramangil Doga,Nair Rishikesh,DSouza Sabina,Zhou Dylan,Li Mingyang,Doughan Farah,Chen Raymond,Shafran Jordan,Loyd Mayme,Xia Zheng,Sykes David B.,Moran Amy,Patnaik Akash

Abstract

ABSTRACTImmune-based therapies induce durable remissions in subsets of patients across multiple malignancies. However, there is limited efficacy of immunotherapy in metastatic castrate-resistant prostate cancer (mCRPC), manifested by an enrichment of immunosuppressive (M2) tumor- associated macrophages (TAM) in the tumor immune microenvironment (TME). Therefore, therapeutic strategies to overcome TAM-mediated immunosuppression are critically needed in mCRPC. Here we discovered that NLR family pyrin domain containing 3 (NLRP3), an innate immune sensing protein, is highly expressed in TAM from metastatic PC patients treated with standard-of-care androgen deprivation therapy (ADT). Importantly,ex vivostudies revealed that androgen receptor (AR) blockade in TAM upregulates NLRP3 expression, but not inflammasome activity, and concurrent AR blockade/NLRP3 agonist (NLRP3a) treatment promotes cancer cell phagocytosis by immunosuppressive M2 TAM. In contrast, NLRP3a monotherapy was sufficient to enhance phagocytosis of cancer cells in anti-tumor (M1) TAM, which exhibit highde novoNLRP3 expression. Critically, combinatorial treatment with ADT/NLRP3a in a murine model of advanced PC resulted in significant tumor control, with tumor clearance in 55% of mice via TAM phagocytosis. Collectively, our results demonstrate NLRP3 as an AR-regulated “macrophage phagocytic checkpoint”, inducibly expressed in TAM by ADT and activated by NLRP3a treatment, the combination resulting in TAM-mediated phagocytosis and tumor control.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3