Support for the dominance theory in Drosophila transcriptomes

Author:

Llopart Ana,Brud Evgeny,Pettie Nikale,Comeron Josep M.

Abstract

ABSTRACTInteractions among divergent elements of transcriptional networks from different species can lead to misexpression in hybrids through regulatory incompatibilities, some with the potential to generate sterility. Genes with male-biased expression tend to be overrepresented among genes misexpressed in hybrid males. While the possible contribution of faster-male evolution to this misexpression has been explored, the role of the hemizygous X chromosome (i.e., the dominance theory for transcriptomes) remains yet to be determined. Here we study genome-wide patterns of gene expression in females and males of Drosophila yakuba and D. santomea and their hybrids. We used attached-X stocks to specifically test the dominance theory, and we uncovered a significant contribution of recessive alleles on the X chromosome to hybrid misexpression. Our analysis of gene expression patterns suggests that there is a contribution of weakly deleterious regulatory mutations to gene expression divergence in the sex towards which the expression is biased. In the opposite sex (e.g., genes with female-biased expression analyzed in male transcriptomes), we detect stronger selective constraints on gene expression divergence. Although genes with high degree of male-biased expression show a clear signal of faster-X evolution for gene expression divergence, we also detected slower-X evolution of gene expression in other gene classes (e.g. female-biased genes) that is mediated by significant decreases of cis- and trans-regulatory divergence. The distinct behavior of X-linked genes with high degree of male-biased expression is consistent with these genes experiencing a higher incidence of positively selected regulatory mutations than their autosomal counterparts. We propose that both dominance theory and faster-X evolution of gene expression may be major contributors to hybrid misexpression and possibly the large X-effect in these species.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3