Super-resolution imaging reveals the evolution of higher-order chromatin folding in early carcinogenesis

Author:

Xu Jianquan,Ma Hongqiang,Ma Hongbin,Jiang Wei,Duan Meihan,Zhao Shimei,Gao Chenxi,Hahm Eun-Ryeong,Lardo Santana M.,Troy Kris,Sun Ming,Pai Reet,Stolz Donna B,Singh Shivendra,Brand Randall E,Hartman Douglas J.,Hu Jing,Hainer Sarah J.,Liu Yang

Abstract

SUMMARYAberrant chromatin structure is a hallmark in cancer cells and has long been used for clinical diagnosis of cancer. However, underlying higher-order chromatin folding during malignant transformation remains elusive, due to the lack of molecular scale resolution. Using optimized stochastic optical reconstruction microscopy (STORM) for pathological tissue (PathSTORM), we uncovered a gradual decompaction and fragmented higher-order chromatin folding throughout all stages of carcinogenesis in multiple tumor types, even prior to the tumor formation. Our integrated imaging, genomic, and transcriptomic analyses reveal the functional consequences in enhanced formation of transcription factories, spatial juxtaposition with relaxed nanosized chromatin domains and impaired genomic stability. We also demonstrate the potential of imaging higher-order chromatin decompaction to detect high-risk precursors that cannot be distinguished by conventional pathology. Taken together, our findings reveal the gradual decompaction and fragmentation of higher-order chromatin structure as an enabling characteristic in early carcinogenesis to facilitate malignant transformation, which may improve cancer diagnosis, risk stratification, and prevention.SIGNIFICANCEGenomic DNA is folded into a higher-order structure that regulates transcription and maintains genomic stability. Although much progress has been made on understanding biochemical characteristics of epigenetic modifications in cancer, the higher-order folding of chromatin structure remains largely unknown. Using optimized super-resolution microscopy, we uncover de-compacted and fragmented chromatin folding in tumor initiation and stepwise progression in multiple tumor types, even prior to the presence of tumor cells. This study underlines the significance of unfolding higher-order chromatin structure as an enabling characteristic to promote tumorigenesis, which may facilitate the development and evaluation of new preventive strategies. The potential of imaging higher-order chromatin folding to improve cancer detection and risk stratification is demonstrated by detecting high-risk precursors that cannot be distinguished by conventional pathology.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3