Mosaic Ends Tagmentation (METa) assembly for extremely efficient construction of functional metagenomic libraries

Author:

Crofts Terence S.,McFarland Alexander G.,Hartmann Erica M.ORCID

Abstract

ABSTRACTFunctional metagenomic libraries, physical bacterial libraries which allow the high-throughput capture and expression of microbiome genes, have been instrumental in the sequence-naïve and cultivation-independent discovery of novel genes from microbial communities. Preparation of these libraries is limited by their high DNA input requirement and their low cloning efficiency. Here, we describe a new method, METa assembly, for extremely efficient functional metagenomic library preparation. We apply tagmentation to metagenomic DNA from soil and gut microbiomes to prepare DNA inserts for high-throughput cloning into functional metagenomic libraries. The presence of mosaic end sequences in the resulting DNA fragments synergizes with homology-based assembly cloning to result in a 300-fold increase in library size compared to traditional blunt cloning based protocols. Compared to published libraries prepared by state-of-the-art protocols we show that METa assembly is on average 23- to 270-fold more efficient and can be effectively used to prepare gigabase-sized libraries with as little as 200 ng of input DNA. We demonstrate the utility of METa assembly to capture novel genes based on their function by discovering novel aminoglycoside (26% amino acid identity) and colistin (36% amino acid identity) resistance genes in soil and goose gut microbiomes. METa assembly provides a streamlined, flexible, and efficient method for preparing functional metagenomic libraries, enabling new avenues of genetic and biochemical research into low biomass or scarce microbiomes.IMPORTANCEMedically and industrially important genes can be recovered from microbial communities by high-throughput sequencing but are limited to previously sequenced genes and their relatives. Cloning a metagenome en masse into an expression host to produce a functional metagenomic library is a sequence-naïve and cultivation-independent method to discover novel genes. This directly connects genes to functions, but the process of preparing these libraries is DNA greedy and inefficient. Here we describe a library preparation method that is an order of magnitude more efficient and less DNA greedy. This method is consistently efficient across libraries prepared from cultures, a soil microbiome, and from a goose fecal microbiome and allowed us to discover novel antibiotic resistance genes. This new library preparation method will potentially allow for the functional metagenomic exploration of microbiomes that were previously off limits due to their rarity or low microbial biomass, such biomedical swabs or exotic samples.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3