Small-RNA sequencing reveals altered skeletal muscle microRNAs and snoRNAs signatures in weanling male offspring from mouse dams fed a low protein diet during lactation

Author:

Kanakis IoannisORCID,Alameddine Moussira,Folkes LeightonORCID,Moxon SimonORCID,Myrtziou Ioanna,Ozanne Susan E.ORCID,Peffers Mandy J.ORCID,Goljanek-Whysall KatarzynaORCID,Vasilaki AphroditeORCID

Abstract

ABSTRACTNutrition plays a key role in pre- and postnatal growth of the musculoskeletal system. Maternal diet during gestation and lactation affects the development of skeletal muscles in the offspring and determines muscle health in later life, however, the molecular mechanisms that govern these effects are largely unknown. In this study, we aim to describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction to characterise the impact of early-life undernutrition on skeletal muscle morphology in male offspring at weaning. Mouse dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborn pups were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in NL males but not different in the LN group, as compared to NN, although neonates from low protein fed dams were smaller at birth than those born to dams fed a normal protein. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at the end of lactation. Small RNA-seq analysis demonstrated DE of multiple classes of sncRNAs, including miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, −34a, −122 and −199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes and cellular functions and suggest a promising set of miRs in muscle physiology studies. To our knowledge, this is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3