Characterization of SARS-CoV-2 genetic structure and infection clusters in a large German city based on integrated genomic surveillance, outbreak analysis, and contact tracing

Author:

Walker Andreas,Houwaart Torsten,Finzer Patrick,Ehlkes Lutz,Tyshaieva Alona,Damagnez Maximilian,Strelow Daniel,Duplessis Ashley,Nicolai Jessica,Wienemann Tobias,Tamayo Teresa,Vasconcelos Malte Kohns,Hülse Lisanna,Hoffmann Katrin,Lübke Nadine,Hauka Sandra,Andree Marcel,Däumer Martin P.,Thielen Alexander,Kolbe-Busch Susanne,Göbels Klaus,Zotz Rainer,Pfeffer Klaus,Timm Jörg,Dilthey Alexander T.ORCID,

Abstract

AbstractViral genome sequencing can address key questions about SARS-CoV-2 evolution and viral transmission. Here, we present an integrated system of genomic surveillance in the German city of Düsseldorf, combining a) viral surveillance sequencing, b) genetically based identification of infection clusters in the population, c) analysis of hospital outbreaks, d) integration of public health authority contact tracing data, and e) a user-friendly dashboard application as a central data analysis platform. The generated surveillance sequencing data (n = 320 SARS-CoV-2 genomes) showed that the development of the local viral population structure from August to December 2020 was consistent with European trends, with the notable absence of SARS-CoV-2 variants 20I/501Y.V1/B.1.1.7 and B.1.351 until the end of the local sampling period. Against a background of local surveillance and other publicly available SARS-CoV-2 data, four putative SARS-CoV-2 outbreaks at Düsseldorf University Hospital between October and December 2020 (n = 44 viral genomes) were investigated and confirmed as clonal, contributing to the development of improved infection control and prevention measures. An analysis of the generated surveillance sequencing data with respect to infection clusters in the population based on a greedy clustering algorithm identified five candidate clusters, all of which were subsequently confirmed by the integration of public health authority contact tracing data and shown to be represent transmission settings of particular relevance (schools, care homes). A joint analysis of outbreak and surveillance data identified a potential transmission of an outbreak strain from the local population into the hospital and back; and an in-depth analysis of one population infection cluster combining genetic with contact tracing data enabled the identification of a previously unrecognized population transmission chain involving a martial arts gym. Based on these results and a real-time sequencing experiment in which we demonstrated the feasibility of achieving sample-to-turnaround times of <30 hours with the Oxford Nanopore technology, we discuss the potential benefits of routine ultra-fast sequencing of all detected infections for contact tracing, infection cluster detection, and, ultimately, improved management of the SARS-CoV-2 pandemic.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3