A biomechanical switch regulates the transition towards homeostasis in esophageal epithelium

Author:

McGinn Jamie,Hallou Adrien,Han Seungmin,Krizic Kata,Ulyanchenko Svetlana,Iglesias-Bartolome Ramiro,England Frances J.,Verstreken Christophe,Chalut Kevin J.,Jensen Kim B.,Simons Benjamin D.,Alcolea Maria P.

Abstract

AbstractEpithelial cells are highly dynamic and can rapidly adapt their behavior in response to tissue perturbations and increasing tissue demands. However, the processes that finely control these responses and, particularly, the mechanisms that ensure the correct switch to and from normal tissue homeostasis are largely unknown. Here we explore changes in cell behavior happening at the interface between postnatal development and homeostasis in the epithelium of the mouse esophagus, as a physiological model exemplifying a rapid but controlled tissue growth transition. Single cell RNA sequencing and histological analysis of the mouse esophagus reveal significant mechanical changes in the epithelium upon tissue maturation. Organ stretching experiments further indicate that tissue strain caused by the differential growth of the mouse esophagus relative to the entire body promotes the emergence of a defined committed population in the progenitor compartment as homeostasis is established. Our results point to a simple mechanism whereby the mechanical changes experienced at the whole tissue level are integrated with those “sensed” at the cellular level to control epithelial cell behavior and tissue maintenance.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3