Abstract
AbstractPrevious work in several laboratories has demonstrated that the epitranscriptomic addition of m6A to viral transcripts promotes the replication and pathogenicity of a wide range of DNA and RNA viruses, yet the underlying mechanisms responsible for this positive effect have remained unclear. It is known that m6A function is largely mediated by cellular m6A binding proteins or readers, yet how m6A readers regulate viral gene expression in general, and HIV-1 gene expression in particular, has been controversial. Here, we confirm that m6A addition indeed regulates HIV-1 RNA expression and demonstrate that this effect is in large part mediated by the the nuclear m6A reader YTHDC1 and the cytoplasmic m6A reader YTHDF2. Both YTHDC1 and YTHDF2 bind to multiple distinct and overlapping sites on the HIV-1 RNA genome, with YTHDC1 recruitment serving to regulate the alternative splicing of HIV-1 RNAs while YTHDF2 binding correlates with increased HIV-1 transcript stability.Author SummaryThis manuscript reports that the expression of mRNAs encoded by the pathogenic human retrovirus HIV-1 is regulated by the methylation of a small number of specific adenosine residues. These in turn recruit a nuclear RNA binding protein, called YTHDC1, which modulates the alternative splicing of HIV-1 transcripts, as well as a cytoplasmic RNA binding protein, called YTHDF2, which stabilizes viral mRNAs. The regulation of HIV-1 gene expression by adenosine methylation is therefore critical for the effective and ordered expression of HIV-1 mRNAs and could represent a novel target for antiviral development.
Publisher
Cold Spring Harbor Laboratory