Correction of measurement error in a commercial multiple-breath washout device

Author:

Wyler FlorianORCID,Oestreich Marc-AlexanderORCID,Frauchiger Bettina S.ORCID,Ramsey KathrynORCID,Latzin PhilippORCID

Abstract

AbstractRationaleNitrogen multiple-breath washout (N2MBW) is an established technique to assess functional residual capacity (FRC) and ventilation inhomogeneity in the lung. Accurate measurement of gas concentrations is essential for the appropriate calculation of clinical outcomes.ObjectivesWe investigated the accuracy of oxygen and carbon dioxide measurements used for the indirect calculation of nitrogen concentration in a commercial MBW device (Exhalyzer D, Eco Medics AG, Duernten, Switzerland) and its impact on FRC and lung clearance index (LCI).MethodsHigh precision calibration gas mixtures and mass spectrometry were used to evaluate sensor output. We assessed the impact of corrected signal processing on FRC and LCI in a dataset of healthy children and children with cystic fibrosis using custom analysis software.ResultsWe found inadequate correction for the cross sensitivity of the oxygen and carbon dioxide sensors in the Exhalyzer D device. This results in an overestimation of expired nitrogen concentration, and consequently FRC and LCI outcomes. Breath-by-breath correction of this error reduced mean (SD) FRC by 8.9 (2.2)% and LCI by 11.9 (4.0)%. It also resulted in almost complete disappearance of the tissue nitrogen signal at the end of measurements.ConclusionsInadequate correction for cross sensitivity between the oxygen and carbon dioxide gas sensors of the Exhalyzer D device leads to an overestimation of FRC and LCI. Correction of this error is possible and could be applied by re-analysing the measurements breath-by-breath in an updated software version.Grants, Gifts, Equipment, DrugsEco Medics AG (Duernten, Switzerland) provided a research version of their commercial software Spiroware 3.2.1 including insight on signal processing algorithms and helped with the acquisition of mass spectrometry measurements. This project was funded by the Swiss National Science Foundation, Grant Nr. 182719 (P. Latzin) and 168173 (K. Ramsey)

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3