Author:
Mendez Oscar A.,Machado Emiliano Flores,Lu Jing,Koshy Anita A.
Abstract
AbstractToxoplasma gondii is an intracellular parasite that causes a long-term latent infection of neurons. Using a custom MATLAB-based mapping program in combination with a mouse model that allows us to permanently mark neurons injected with parasite proteins, we found that Toxoplasma-injected neurons (TINs) are heterogeneously distributed in the brain, primarily localizing to the cortex followed by the striatum. Using immunofluorescence co-localization assays, we determined that cortical TINs are commonly (>50%) excitatory neurons (FoxP2+) and that striatal TINs are often (>65%) medium spiny neurons (MSNs) (FoxP2+). As MSNs have highly characterized electrophysiology, we used ex vivo slices from infected mice to perform single neuron patch-clamping on striatal TINs and neighboring uninfected MSNs (bystander MSNs). These studies demonstrated that TINs have highly abnormal electrophysiology, while the electrophysiology of bystander MSNs was akin to that of MSNs from uninfected mice. Collectively, these data offer new neuroanatomic and electrophysiologic insights into CNS toxoplasmosis.
Publisher
Cold Spring Harbor Laboratory