Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data

Author:

Malikic Salem,Jahn Katharina,Kuipers Jack,Sahinalp S. Cenk,Beerenwinkel Niko

Abstract

AbstractUnderstanding the evolutionary history and subclonal composition of a tumour represents one of the key challenges in overcoming treatment failure due to resistant cell populations. Most of the current data on tumour genetics stems from short read bulk sequencing data. While this type of data is characterised by low sequencing noise and cost, it consists of aggregate measurements across a large number of cells. It is therefore of limited use for the accurate detection of the distinct cellular populations present in a tumour and the unambiguous inference of their evolutionary relationships. Single-cell DNA sequencing instead provides data of the highest resolution for studying intra-tumour heterogeneity and evolution, but is characterised by higher sequencing costs and elevated noise rates. In this work, we develop the first computational approach that infers trees of tumour evolution from combined single-cell and bulk sequencing data. Using a comprehensive set of simulated data, we show that our approach systematically outperforms existing methods with respect to tree reconstruction accuracy and subclone identification. High fidelity reconstructions are obtained even with a modest number of single cells. We also show that combining single-cell and bulk sequencing data provides more realistic mutation histories for real tumours.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

1. The Clonal Evolution of Tumor Cell Populations

2. Evolutionary Determinants of Cancer

3. Tumour heterogeneity and the evolution of polyclonal drug resistance;Molecular Oncology,2014

4. Francesco Strino , Fabio Parisi , Mariann Micsinai , and Yuval Kluger . Trap: a tree approach for fingerprinting subclonal tumor composition. Nucleic acids research, 41(17):e165-e165, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3