Author:
Dostie Josée,Richmond Todd A.,Arnaout Ramy A.,Selzer Rebecca R.,Lee William L.,Honan Tracey A.,Rubio Eric D.,Krumm Anton,Lamb Justin,Nusbaum Chad,Green Roland D.,Dekker Job
Abstract
Physical interactions between genetic elements located throughout the genome play important roles in gene regulation and can be identified with the Chromosome Conformation Capture (3C) methodology. 3C converts physical chromatin interactions into specific ligation products, which are quantified individually by PCR. Here we present a high-throughput 3C approach, 3C-Carbon Copy (5C), that employs microarrays or quantitative DNA sequencing using 454-technology as detection methods. We applied 5C to analyze a 400-kb region containing the human β-globin locus and a 100-kb conserved gene desert region. We validated 5C by detection of several previously identified looping interactions in the β-globin locus. We also identified a new looping interaction in K562 cells between the β-globin Locus Control Region and the γ–β-globin intergenic region. Interestingly, this region has been implicated in the control of developmental globin gene switching. 5C should be widely applicable for large-scale mapping of cis- and trans- interaction networks of genomic elements and for the study of higher-order chromosome structure.
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics(clinical),Genetics
Cited by
1016 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献