Role of PML-Nuclear Bodies in Human Herpesvirus 6A and 6B Genome Integration

Author:

Collin VanessaORCID,Gravel AnnieORCID,Kaufer Benedikt B.,Flamand LouisORCID

Abstract

AbstractHuman herpesviruses 6A and 6B (HHV-6A/B) are two betaherpesviruses that readily integrate their genomes into the telomeres of human chromosomes. To date, the cellular or viral proteins that facilitate HHV-6A/B integration remain elusive. In the present study, we demonstrate that the immediate early protein 1 (IE1) of HHV-6A/B colocalizes with telomeres during infection. Moreover, IE1 associates with PML-NBs, a nuclear complex that regulates multiples cellular mechanism including DNA repair and antiviral responses. Furthermore, we could demonstrate that IE1 targets all PML isoforms and that both proteins colocalize at telomeres. To determine the role of PML in HHV-6A/B integration, we generated PML knockout cell lines using CRISPR/Cas9. Intriguingly, in the absence of PML, the IE1 protein could still localize to telomeres albeit less frequently. More importantly, HHV-6A/B integration was impaired in the absence of PML, indicating that it plays a role in the integration process. Taken together, we identified the first cellular protein that aids in the integration of HHV-6A/B and shed light on this targeted integration mechanism.Author summaryHuman herpesviruses type 6A and 6B are relatively common viruses whose infections can be life threatening in patients with a compromised immune system. A rather unique feature of these viruses is their ability to integrate their genome in human chromosomes. Integration takes place is a specialized region of the chromosomes known as telomeres, a region that controls cellular lifespan. To date, the mechanisms leading to HHV-6A and HHV-6B integration remain elusive. Our laboratory has identified that the IE1 protein of HHV-6A and HHV-6B target the telomeres. Moreover, we have shown that IE1 associates with a cellular protein, PML, that is responsible for the regulation of important cellular mechanisms such as the life span of cells and DNA repair. Hence, we studied the role of PML in HHV-6 integration. Our study demonstrates that in absence of PML, the HHV-6A and HHV-6B integrate 50-70% less frequently. Thus, our study unveils the first cellular protein involved in HHV-6A and HHV-6 chromosomal integration.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3