Long-read transcriptomics of Ostreid herpesvirus 1 uncovers a conserved expression strategy for the capsid maturation module and pinpoints a mechanism for evasion of the ADAR-based antiviral defence

Author:

Rosani Umberto,Bortoletto Enrico,Zhang Xiang,Huang Bo-Wen,Xin Lu-Sheng,Krupovic MartORCID,Bai Chang-Ming

Abstract

AbstractOstreid herpesvirus 1 (OsHV-1), a member of the familyMalacoherpesviridae(orderHerpesvirales), is a major pathogen of bivalves. However, the molecular details of the malacoherpesvirus infection cycle and its overall similarity to the replication of mammalian herpesviruses (familyOrthoherpesviridae) remain obscure. Here, to gain insights into the OsHV-1 biology, we performed long read sequencing of infected blood clams,Anadara broughtonii, which yielded over one million OsHV-1 long reads. This data enabled the annotation of the viral genome with 78 gene units and 274 transcripts, of which 67 were polycistronic mRNAs, 35 ncRNAs and 20 natural antisense transcripts (NATs). Transcriptomics and proteomics data indicate preferential transcription and independent translation of the capsid scaffold protein as an OsHV-1 capsid maturation protease isoform. The conservation of this transcriptional architecture acrossHerpesviraleslikely indicates its functional importance and ancient origin. Moreover, we traced RNA editing events using short read sequencing and supported the presence of inosine nucleotides in native OsHV-1 RNA, consistent with the activity of ADAR1. Our data suggests that, whereas RNA hyper-editing is concentrated in specific regions of the OsHV-1 genome, single nucleotide editing is more dispersed along OsHV-1 transcripts. In conclusion, we revealed the existence of a conserved pan-Herpesviralestranscriptomic architecture of the capsid maturation module and uncovered a transcription-based viral counter defence mechanism presumably facilitating the evasion of the host ADAR antiviral system.Author SummaryOstreid herpesvirus 1 (OsHV-1, familyMalacoherpesviridae) is a major pathogen of bivalve species, causing devasting mortalities and substantial economic losses of aquaculture species. The divergence of OsHV-1 compared to more extensively studied mammalian herpesviruses (familyOrthoherpesviridae) hampered the understanding of its biology. We performed a deep characterization of the OsHV-1 transcriptome based on long-read RNA sequencing produced from experimentally infected blood clams (Anadara broughtonii). Owing to the superior power of long read sequencing to disentangle overlapping transcript isoforms, we could reveal the complexity of the OsHV-1 transcriptome, composed of 274 transcripts. Despite the extensive divergence of OsHV-1 from vertebrate herpesviruses, we reported the presence of a pan-Herpesviralestranscriptomic architecture of the capsid maturation module, likely underpinning a conserved functional role in capsid assembly. Furthermore, we revealed the peculiar OsHV-1 transcriptomic patterns, presumably facilitating the evasion of the ADAR anti-viral defence system. In particular, OsHV-1 generates “molecular decoys” by co-expressing sense-antisense transcripts that sequester most ADAR RNA hyper-editing. Both these aspects support the existence of a functional role of “transcriptional architecture” in OsHV-1, contributing to a better understanding of the molecular behaviour of this virus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3