Genetic and Epigenetic Characterization of Sarcoma Stem Cells Across Subtypes Identifies EZH2 as a Therapeutic Target

Author:

O’Donnell Edmond,Muñoz Maria,Davis Ryan,Randall R. Lor,Tepper Clifford,Carr-Ascher Janai

Abstract

AbstractHigh-grade complex karyotype soft tissue sarcomas (STS) are a heterogeneous and aggressive set of cancers that share a common treatment strategy. Disease progression and failure to respond to anthracycline based chemotherapy, standard first-line treatment, is associated with poor patient outcomes. To address this, we investigated the contribution of STS cancer stem cells (STS-CSCs) to doxorubicin resistance. We identified a positive correlation between CSC abundance and doxorubicin IC50in resistant cell lines. We investigated if a common genetic signature across STS-CSCs could be targeted. Utilizing patient derived samples from five sarcoma subtypes we identified Enhancer of Zeste homolog 2 (EZH2), a member of the polycomb repressive complex 2 (PRC2) responsible for H3K27 methylation as being enriched in the CSC population. EZH2 activity and a shared epigenetic profile was observed across subtypes. Targeting of EZH2 using Tazemetostat, an FDA approved inhibitor specifically ablated the STS-CSC population. Treatment of doxorubicin resistant cell lines with tazemetostat resulted in a decrease in the STS-CSC population. Further, co-treatment was not only synergistic in the parent cell lines, but restored chemosensitivity in doxorubicin resistant lines. These data confirm the presence of shared genetic programs across distinct subtypes of CSC-STS that can be therapeutically targeted.

Publisher

Cold Spring Harbor Laboratory

Reference44 articles.

1. Fletcher, C. , Bridge, J. , Hogendoorn, P. , and Mertens, F. (2013). WHO Classification of Tumours of Soft Tissue and Bone (IARC: Lyon).

2. The epigenomics of sarcoma

3. Mechanisms of sarcoma development

4. The epigenomics of sarcoma

5. Molecular pathology of sarcomas: concepts and clinical implications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3