Abstract
AbstractDiapause has long been proposed to play a significant role in the evolution of eusociality in Hymenoptera. Recent studies have shown that shifts in the diapause stage precede social evolution in wasps and bees, however, the genomic basis remains unknown. Given the overlap in molecular pathways that regulate diapause and lifespan, we hypothesized that the evolutionary loss of developmental diapause may lead to extended lifespan among adults, which is a prerequisite for the evolution of eusociality. To test this, we compared 27 bee genomes with or without prepupal diapause. Our results point to several potential mechanisms for lifespan extension in species lacking prepupal diapause, including the loss of the growth hormone PTTH and its receptor TORSO, along with a significant overlap between genes for which selection is intensified and those with a known role in aging. Specifically, we observed purifying selection of pro-longevity genes and relaxed selection of anti-longevity genes within the IIS/TOR pathway in species that have lost prepupal diapause. Changes in selection pressures on this pathway may lead to the evolution of new phenotypes, such as lifespan extension and altered responses to nutritional signals, that are crucial for social evolution.
Publisher
Cold Spring Harbor Laboratory