Heat stress and recovery induce transcriptomic changes in lactogenic bovine mammary epithelial (MAC-T) cells

Author:

Yu Xingtan,Harman Rebecca M.,Danev Nikola,Li Guangsheng,Fang Yifei,Van de Walle Gerlinde R.,Duan Jingyue Ellie

Abstract

AbstractHeat stress (HS) in cattle significantly challenges the dairy industry by reducing milk production. However, the molecular mechanism behind mammary gland responses to HS and recovery remains poorly understood. This study aimed to determine the transcriptomic changes in lactogenic bovine mammary epithelial (MAC-T) cells after HS and post-HS recovery. Six culture conditions were analyzed: MAC-T cells cultured in basal medium, cells in lactogenic medium to induce differentiation, differentiated cells at standard temperature (37℃) or HS (42℃) for 1 hour. HS cells were collected after incubation at 37℃ for either 2 or 6 hours to examine the extent of recovery.A total of 1,668 differentially expressed genes (DEGs) were identified. Differentiated cells expressed genes associated with milk lipid synthesis, indicating lactogenic potential. HS suppressed genes involved in cellular differentiation and activated heat shock protein genes. Several transcription factors were identified as potential regulators of HS response. During recovery, chaperon-mediated protein folding genes remained elevated. Apoptosis regulation genes were induced at 2 hours, and cellular homeostasis regulation genes were enriched at 6 hours. Overall, these findings provide a foundation for the molecular mechanisms involved in HS and recovery in cattle.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3