Widening geographic range of Rift Valley fever disease clusters associated with climate change in East Africa

Author:

Situma Silvia,Nyakarahuka Luke,Omondi Evans,Mureithi Marianne,Mweu Marshal,Muturi Matthew,Mwatondo Athman,Dawa Jeanette,Konongoi Limbaso,Khamadi Samoel,Clancey Erin,Lofgren Eric,Osoro Eric,Ngere Isaac,Breiman Robert F.,Bakamutumaho Barnabas,Muruta Allan,Gachohi John,Oyola Samuel O.,Njenga M. Kariuki,Singh Deepti

Abstract

AbstractBackgroundRecent epidemiology of Rift Valley fever (RVF) disease in Africa suggests growing frequency and expanding geographic range of small disease clusters in regions that previously had not reported the disease. We investigated factors associated with the phenomenon by characterizing recent RVF disease events in East Africa.MethodsData on 100 disease events (2008 – 2022) from Kenya, Uganda, and Tanzania were obtained from public databases and institutions, and modeled against possible geo-ecological risk factors of occurrence including altitude, soil type, rainfall/precipitation, temperature, normalized difference vegetation index (NDVI), livestock production system, land-use change, and long-term climatic variations. Decadal climatic variations between 1980-2022 were evaluated for association with the changing disease pattern.ResultsOf 100 events, 91% were small RVF clusters with a median of one human (IQR, 1-3) and 3 livestock cases (IQR, 2-7). These clusters exhibited minimal human mortality (IQR 0-1), and occurred primarily in highlands (67%), with 35% reported in areas that had never reported RVF disease. Multivariate regression analysis of geo-ecological variables showed a positive correlation between occurrence and increasing temperature and rainfall. A 1oC increase in temperature and 1-unit increase in NDVI, 1-3 months prior were associated with increased RVF incidence rate ratios (IRR) of 1.20 (95% CI 1.1,1.2) and 9.88 (95% CI 0.85, 119.52), respectively. Long-term climatic trends showed significant decadal increase in annual mean temperature (0.12 to 0.3oC/decade, P<0.05), associated with decreasing rainfall in arid and semi-arid lowlands but increasing rainfall trends in highlands (P<0.05). These hotter and wetter highlands showed increasing frequency of RVF clusters, accounting for 76% and 43% in Uganda and Kenya, respectively.ConclusionThese findings demonstrate the changing epidemiology of RVF disease. The widening geographic range of disease is associated with climatic variations, with the likely impact of wider dispersal of virus to new areas of endemicity and future epidemics.Key questionsWhat is already known on this topic?Rift Valley fever is recognized for its association with heavy rainfall, flooding, and El Niño rains in the East African region. A growing body of recent studies has highlighted a shifting landscape of the disease, marked by an expanding geographic range and an increasing number of small RVF clusters.What this study addsThis study challenges previous beliefs about RVF, revealing that it predominantly occurs in small clusters rather than large outbreaks, and its association with El Niño is not as pronounced as previously thought. Over 65% of these clusters are concentrated in the highlands of Kenya and Uganda, with 35% occurring in previously unaffected regions, accompanied by an increase in temperature and total rainfall between 1980 and 2022, along with a rise in the annual number of rainy days. Notably, the observed rainfall increases are particularly significant during the short-rains season (October-December), aligning with a secondary peak in RVF incidence. In contrast, the lowlands of East Africa, where typical RVF epidemics occur, display smaller and more varied trends in annual rainfall.How this study might affect research, practice, or policyThe worldwide consequence of the expanding RVF cluster is the broader dispersion of the virus, leading to the establishment of new regions with virus endemicity. This escalation heightens the risk of more extensive extreme-weather-associated RVF epidemics in the future. Global public health institutions must persist in developing preparedness and response strategies for such scenarios. This involves the creation and approval of human RVF vaccines and therapeutics, coupled with a rapid distribution plan through regional banks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3