Frequency and duration of sensory flicker controls astrocyte and neuron specific transcriptional profiles in 5xFAD mice

Author:

Bitarafan SaraORCID,Pybus Alyssa F.ORCID,Rivera Moctezuma Felix G.ORCID,Adibi Mohammad,Franklin Tina C.ORCID,Singer Annabelle C.ORCID,Wood Levi B.ORCID

Abstract

AbstractBackgroundCurrent clinical trials are investigating gamma frequency sensory stimulation as a potential therapeutic strategy for Alzheimer’s disease, yet we lack a comprehensive picture of the effects of this stimulation on multiple aspects of brain function. While most prior research has focused on gamma frequency sensory stimulation, we previously showed that exposing mice to visual flickering stimulation increased MAPK and NFκB signaling in the visual cortex in a manner dependent on duration and frequency of sensory stimulation exposure. Because these pathways control multiple neuronal and glial functions and are differentially activated based on the duration and frequency of flicker stimulation, we aimed to define the transcriptional effects of different frequencies and durations of flicker stimulation on multiple brain functions.MethodsWe exposed 5xFAD mice to different frequencies of audio/visual flicker stimulation (constant light, 10Hz, 20Hz, 40Hz) for durations of 0.5hr, 1hr, or 4hr, then used bulk RNAseq to profile transcriptional changes within the visual cortex and hippocampus tissues. Using weighted gene co-expression network analysis, we identified modules of co-expressed genes controlled by frequency and/or duration of stimulation.ResultsWithin the visual cortex, we found that all stimulation frequencies caused fast activation of a module of immune genes within 1hr and slower suppression of synaptic genes after 4hrs of stimulation. Interestingly, all frequencies of stimulation led to slow suppression of astrocyte specific gene sets, while activation of neuronal gene sets was frequency and duration specific. In contrast, in the hippocampus, immune and synaptic modules were suppressed based on the frequency of stimulation. Specifically,10Hz activated a module of genes associated with mitochondrial function, metabolism, and synaptic translation while 10Hz rapidly suppressed a module of genes linked to neurotransmitter activity.ConclusionCollectively, our data indicate that the frequency and duration of flicker stimulation controls immune, neuronal, and metabolic genes in multiple regions of the brain affected by Alzheimer’s disease. Flicker stimulation may thus represent a potential therapeutic strategy that can be tuned based on the brain region and the specific cellular process to be modulated.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3