Interactive Segmentation of Lung Tissue and Lung Excursion in Thoracic Dynamic MRI Based on Shape-guided Convolutional Neural Networks

Author:

Xie LipengORCID,Udupa Jayaram K.,Tong YubingORCID,McDonough Joseph M.,Cahill Patrick J.,Anari Jason B.,Torigian Drew A.

Abstract

AbstractPurposeLung tissue and lung excursion segmentation in thoracic dynamic magnetic resonance imaging (dMRI) is a critical step for quantitative analysis of thoracic structure and function in patients with respiratory disorders such as Thoracic Insufficiency Syndrome (TIS). However, the complex variability of intensity and shape of anatomical structures and the low contrast between the lung and surrounding tissue in MR images seriously hamper the accuracy and robustness of automatic segmentation methods. In this paper, we develop an interactive deep-learning based segmentation system to solve this problem.Material & MethodsConsidering the significant difference in lung morphological characteristics between normal subjects and TIS subjects, we utilized two independent data sets of normal subjects and TIS subjects to train and test our model. 202 dMRI scans from 101 normal pediatric subjects and 92 dMRI scans from 46 TIS pediatric subjects were acquired for this study and were randomly divided into training, validation, and test sets by an approximate ratio of 5:1:4. First, we designed an interactive region of interest (ROI) strategy to detect the lung ROI in dMRI for accelerating the training speed and reducing the negative influence of tissue located far away from the lung on lung segmentation. Second, we utilized a modified 2D U-Net to segment the lung tissue in lung ROIs, in which the adjacent slices are utilized as the input data to take advantage of the spatial information of the lungs. Third, we extracted the lung shell from the lung segmentation results as the shape feature and inputted the lung ROIs with shape feature into another modified 2D U-Net to segment the lung excursion in dMRI. To evaluate the performance of our approach, we computed the Dice coefficient (DC) and max-mean Hausdorff distance (MM-HD) between manual and automatic segmentations. In addition, we utilized Coefficient of Variation (CV) to assess the variability of our method on repeated dMRI scans and the differences of lung tidal volumes computed from the manual and automatic segmentation results.ResultsThe proposed system yielded mean Dice coefficients of 0.96±0.02 and 0.89±0.05 for lung segmentation in dMRI of normal subjects and TIS subjects, respectively, demonstrating excellent agreement with manual delineation results. The Coefficient of Variation and p-values show that the estimated lung tidal volumes of our approach are statistically indistinguishable from those derived by manual segmentations.ConclusionsThe proposed approach can be applied to lung tissue and lung excursion segmentation from dynamic MR images with high accuracy and efficiency. The proposed approach has the potential to be utilized in the assessment of patients with TIS via dMRI routinely.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3