Differential Effects of Ganglioside Lipids on the Conformation and Aggregation of Islet Amyloid Polypeptide

Author:

McCalpin Samuel D.,Mechakra Lina,Ivanova Magdalena I.,Ramamoorthy Ayyalusamy

Abstract

ABSTRACTDespite causing over 1 million deaths annually, Type 2 Diabetes (T2D) currently has no curative treatments. Aggregation of the islet amyloid polypeptide (hIAPP) into amyloid plaques plays an important role in the pathophysiology of T2D and thus presents a target for therapeutic intervention. The mechanism by which hIAPP aggregates contributes to the development of T2D is unclear but are proposed to involve disruption of cellular membranes. However, nearly all research on hIAPP-lipid interactions has focused on anionic phospholipids, which are primarily present in the cytosolic face of plasma membranes. We seek here to characterize the effects of three gangliosides, the dominant anionic lipids in the outer leaflet of the plasma membrane, on the aggregation, structure, and toxicity of hIAPP. Our results show a dual behavior that depends on the molar ratio between the gangliosides and hIAPP. For each ganglioside, a low lipid:peptide ratio enhances hIAPP aggregation and alters the morphology of hIAPP fibrils, while a high ratio eliminates aggregation and stabilizes an α-helix-rich hIAPP conformation. A more negative lipid charge more efficiently promotes aggregation, and a larger lipid headgroup improves inhibition of aggregation. hIAPP also alters the phase transitions of the lipids, favoring spherical micelles over larger tubular micelles. We discuss our results in the context of available lipid surface area for hIAPP binding and speculate on a role for gangliosides in facilitating toxic hIAPP aggregation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3