Abstract
AbstractStudies on the dynamics of single cell phenotyping have been hampered by the lack of quantitative high-throughput metabolism assays. Extracellular acidification, a prominent phenotype, yields significant insights into cellular metabolism, including tumorigenicity. Here, we develop a versatile microfluidic system for single cell optical pH analysis (SCO-pH), which compartmentalizes single cells in 140-pL droplets and immobilizes approximately 40,000 droplets in a two-dimensional array for temporal extracellular pH analysis. SCO-pH distinguishes cells undergoing hyperglycolysis induced by oligomycin A from untreated cells by monitoring their extracellular acidification. To facilitate pH sensing in each droplet, we encapsulate a cell-impermeable pH probe whose fluorescence intensities are quantified. Using this approach, we can differentiate hyperglycolytic cells and concurrently observe single cell heterogeneity in extracellular acidification dynamics. This high-throughput system will be useful in applications that require dynamic phenotyping of single cells with significant heterogeneity.
Publisher
Cold Spring Harbor Laboratory