Xylem perforation plate phenotypes affect water use and drought adaptation in maize (Zea maysL.)

Author:

Strock Christopher F.,DePew Cody L.,Sidhu Jagdeep S.,Xu Tianyu,Lynch Jonathan P.ORCID

Abstract

SummaryRationale: Xylem morphology in annual monocots is important for water use strategies in many agronomically important species.Methods:We assess how xylem perforation plates affect water use strategies in maize (Zea maysL.) throughin silicomodeling, empirical studies under water deficit in controlled environments, and in the field.Key Result: Significant genotypic variation for the prominence and frequency of perforation plates was observed in maize germplasm. Perforation plate phenotypes had high heritability, were associated with several QTL, and were pleiotropic across leaves, aerial nodal roots, and subterranean nodal roots. Perforation plate phenotypes did not affect vulnerability to cavitation, but modeling predicted that they should affect axial water transport, which was supported byin situmeasurements of root segments. Metaxylem vessel length was correlated with the rate of root elongation, root depth, and deep-water utilization in mesocosms. Under drought stress in the field, variation in xylem vessel length was associated with leaf roll, leaf temperature, transpiration, photosynthesis, and grain yield.Main Conclusion:Phenotypic variation for xylem perforation plate phenotypes in maize directly affects axial water conductance and is part of a pleiotropic syndrome with greater root elongation and deeper rooting that improves adaptation to water deficit stress.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3