X-COVNet: Externally Validated Model for Computer-Aided Diagnosis of Pneumonia-Like Lung Diseases in Chest X-Rays Based on Deep Transfer Learning

Author:

Pazos Jorge Félix MartínezORCID,Gonzales Jorge GulínORCID,Lorenzo David BatardORCID,García Arturo OrellanaORCID

Abstract

AbstractSince the appearance of COVID-19, the accurate diagnosis of pneumonia-type lung diseases by chest radiographs has been a challenging task for experts, mainly due to the similarity of patterns between COVID-19 and viral or bacterial pneumonia. To address this challenge, a model for the computer-aided diagnosis of chest X-Rays has been developed in this research. This model might contribute to substantially increasing the accuracy of the diagnosis. This approach is based on supervised learning using neural networks, where the quality of the result depends on the quality of the dataset used during training. Image data augmentation techniques, hyperparameter adjustments and dropout layer contributed to achieve high performance values on test data in multi-class classification. The experiments conducted to evaluate the model yielded that it detects and classifies domain classes with an accuracy of 99.45% on training data, 99.27% on validation data and 99.06% on selected test data. The main contribution of this paper is X-COVNet a new Deep Convolutional Neural Network model using Deep Transfer Learning through the Xception architecture for the assisted diagnosis of COVID-19, pneumonia or healthy patients, trained on COVID-19 Chest X-Ray Database and evaluated through two external databases, which give the model novelty within the lack of external validation in all the literature reviewed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3