Reuniens thalamus recruits recurrent excitation in medial prefrontal cortex

Author:

Vantomme GilORCID,Devienne GabrielleORCID,Hull Jacob M,Huguenard John RORCID

Abstract

AbstractMedial prefrontal cortex (mPFC) and hippocampus are critical for memory retrieval, decision making and emotional regulation. While ventral CA1 (vCA1) shows direct and reciprocal connections with mPFC, dorsal CA1 (dCA1) forms indirect pathways to mPFC, notably via the thalamic Reuniens nucleus (Re). Neuroanatomical tracing has documented structural connectivity of this indirect pathway through Re however, its functional operation is largely unexplored. Here we usedin vivoandin vitroelectrophysiology along with optogenetics to address this question. Whole-cell patch-clamp recordings in acute mouse brain slices revealed both monosynaptic excitatory responses and disynaptic feedforward inhibition for both Re-mPFC and Re-dCA1 pathways. However, we also identified a novel biphasic excitation of mPFC by Re, but not dCA1. These early monosynaptic and late recurrent components are in marked contrast to the primarily feedforward inhibition characteristic of thalamic inputs to neocortex. Local field potential recordings in mPFC brain slices revealed that this biphasic excitation propagates throughout all cortical lamina, with the late excitation specifically enhanced by GABAAR blockade.In vivoNeuropixels recordings in head-fixed awake mice revealed a similar biphasic excitation of mPFC units by Re activation. In summary, Re output produces recurrent feed-forward excitation within mPFC suggesting a potent amplification system in the Re-mPFC network. This may facilitate amplification of dCA1->mPFC signals for which Re acts as the primary conduit, as there is little direct connectivity. In addition, the capacity of mPFC neurons to fire bursts of action potentials in response to Re input suggests that these synapses have a high gain.Significance statementThe interactions between medial prefrontal cortex and hippocampus are crucial for memory formation and retrieval. Yet, it is still poorly understood how the functional connectivity of direct and indirect pathways underlies these functions. This research explores the synaptic connectivity of the indirect pathway through the Reuniens nucleus of the thalamus using electrophysiological recordings and optogenetic manipulations. The study found that Reuniens stimulation recruits recurrent and long-lasting activity in mPFC - a phenomenon not previously recorded. This recurrent activity might create a temporal window ideal for coincidence detection and be an underlying mechanism for memory formation and retrieval.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3