RUCova: Removal of Unwanted Covariance in mass cytometry data

Author:

Astaburuaga-García RosarioORCID,Sell ThomasORCID,Mutlu SametORCID,Sieber AnjaORCID,Lauber KirstenORCID,Blüthgen NilsORCID

Abstract

High dimensional mass cytometry is confounded by unwanted covariance due to variations in cell size and staining efficiency, making analysis and interpretation challenging.We present RUCova, a novel method designed to address confounding factors in mass cytometry data. RUCova removes unwanted covariance using multivariate linear regression on Surrogates of Unwanted Covariance (SUCs), and Principal Component Analysis (PCA). We exemplify the use of RUCova and show that it effectively removes unwanted covariance while preserving genuine biological signals. Our results demonstrate the efficacy of RUCova in elucidating complex data patterns, facilitating the identification of activated signalling pathways, and improving the classification of important cell populations. By providing a robust framework for data normalization and interpretation, RUCova enhances the accuracy and reliability of mass cytometry analyses, contributing to advancements in our understanding of cellular biology and disease mechanisms. The R package is available onhttps://github.com/molsysbio/RUCova. Detailed documentation, data, and the code required to reproduce the results are available onhttps://doi.org/10.5281/zenodo.10913464. Supplementary material: Available at bioRxiv.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3