CRISPR gene and transcriptome engineering (CRISPRgate) improves loss-of-function genetic screening approaches

Author:

Stadager JannisORCID,Bernardini Chiara,Hartmann Laura,May Henrik,Wiepcke Jessica,Kuban Monika,Najafova Zeynab,Johnsen Steven A.,Legewie Stefan,Traube Franziska R.,Jude Julian,Rathert PhilippORCID

Abstract

AbstractThe CRISPR/Cas9 technology has revolutionized genotype-to-phenotype assignments through large-scale loss-of-function (LOF) screens. However, limitations like editing inefficiencies and unperturbed genes cause significant noise in data collection. To address this, we introduce CRISPR Gene and Transcriptome Engineering (CRISPRgate), which uses two specific sgRNAs to simultaneously repress and cleave the target gene within the same cell, increasing LOF efficiencies and reproducibility. CRISPRgate outperforms conventional CRISPRko, CRISPRi, or CRISPRoff systems in suppressing challenging targets and regulators of cell proliferation. Additionally, it efficiently suppresses modulators of EMT and impairs neuronal differentiation in a human iPSC model. In a multiplexed chromatin-focused phenotypic LOF screen, CRISPRgate exhibits improved depletion efficiency, reduced sgRNA performance variance, and accelerated gene depletion compared to individual CRISPRi or CRISPRko, ensuring consistency in phenotypic effects and identifying more significant gene hits. By combining CRISPRko and CRISPRi, CRISPRgate increases LOF rates without increasing genotoxic stress, facilitating library size reduction for advanced LOF screens.MotivationThe CRISPR technology (CRISPRko/CRISPRi) enables the specific depletion of target genes with fewer off-target effects, facilitating precise investigations of gene function. Despite its benefits, CRISPR applications have limitations. Residual active protein expression mediated by in-frame DNA repair or alternative splicing1–8as well as strong epigenetic regulation and difficulties in sgRNA design to the transcription start site (TSS)9–12hinder the full potential of loss-of-function studies using CRISPRko or CRISPRi. We aimed to achieve robust target gene reduction in order to improve the reproducibility of the CRISPR technology by integrating the widely used CRISPRko and CRISPRi approaches into a single application.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3