Automatic Lymph Nodes Segmentation and Histological Status Classification on Computed Tomography Scans Using Convolutional Neural Network

Author:

Shevtsov AlexeyORCID,Tominin IaroslavORCID,Tominin VladislavORCID,Malevanniy Vsevolod,Esakov YuryORCID,Tukvadze ZurabORCID,Nefedov AndreyORCID,Yablonskii PiotrORCID,Gavrilov PavelORCID,Kozlov VadimORCID,Blokhina MariyaORCID,Nalivkina Elena,Gombolevskiy VictorORCID,Vasilev YuriyORCID,Dugova MariyaORCID,Chernina ValeriaORCID,Omelyanskaya OlgaORCID,Reshetnikov RomanORCID,Blokhin IvanORCID,Belyaev MikhailORCID

Abstract

AbstractLung cancer is the second most common type of cancer worldwide, making up about 20% of all cancer deaths with less than 10% 5-year survival rate for the very late stage. The recent guidelines for the most common non-small-cell lung cancer (NSCLC) type recommend performing staging based on the 8th edition of TNM classification, where the mediastinal lymph node involvement plays a key role. However, most of the non-invasive methods have a very limited level of sensitivity and are relatively accurate, but invasive methods can be contradicted for some patients. Current advances in Deep Learning show great potential in solving such problems. Still, most of these works focus on the algorithmic side of the problem, not the clinical relevance. Moreover, none of them addressed individual lymph node malignancy classification problem, restricting the indirect analysis of the whole study, and limiting the interpretability of the result without giving an option for cliniciansto validate the result. This work mitigates these gaps, proposing a multi-step algorithm for each visible mediastinal lymph node segmentation and assessing the probability of its involvement in themetastatic process, using the results of histological verification on training. The developed pipelineshows 0.74 ± 0.01 average Recall with 0.53 ± 0.26 object Dice Score for the clinically relevant lymph nodes segmentation task and 0.73 ROC AUC for patient’s N-stage prediction, outperformingtraditional size-based criteria.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3