Resting state brain network segregation is associated with walking speed and working memory in older adults

Author:

Sato Sumire D.ORCID,Shah Valay A.ORCID,Fettrow TylerORCID,Hall Kristina G.,Tays Grant D.ORCID,Cenko Erta,Roy ArkapravaORCID,Clark David J.ORCID,Ferris Daniel P.ORCID,Hass Chris J.ORCID,Manini Todd M.ORCID,Seidler Rachael D.ORCID

Abstract

ABSTRACTOlder adults exhibit larger individual differences in walking ability and cognitive function than young adults. Characterizing intrinsic brain connectivity differences in older adults across a wide walking performance spectrum may provide insight into the mechanisms of functional decline in some older adults and resilience in others. Thus, the objectives of this study were to: (1) determine whether young adults and high- and low-functioning older adults show group differences in brain network segregation, and (2) determine whether network segregation is associated with working memory and walking function in these groups. The analysis included 21 young adults and 81 older adults. Older adults were further categorized according to their physical function using a standardized assessment; 54 older adults had low physical function while 27 were considered high functioning. Structural and functional resting state magnetic resonance images were collected using a Siemens Prisma 3T scanner. Working memory was assessed with the NIH Toolbox list sorting test. Walking speed was assessed with a 400 m-walk test at participants’ self-selected speed. We found that network segregation in mobility-related networks (sensorimotor, vestibular, and visual networks) was higher in younger adults compared to older adults. There were no group differences in laterality effects on network segregation. We found multivariate associations between working memory and walking speed with network segregation scores. Higher right anterior cingulate cortex network segregation was associated with higher working memory function. Higher right sensorimotor, right vestibular, right anterior cingulate cortex, and lower left anterior cingulate cortex network segregation was associated with faster walking speed. These results are unique and significant because they demonstrate higher network segregation is largely related to higher physical function and not age alone.HighlightsSegregation is lower in mobility-related networks in older adults vs younger adults.Older adults with high and low physical function have segregation differences.Laterality of functional network segregation is not different between age groups.Higher network segregation is associated with faster walking speed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3