Transcriptional and functional consequences of alterations to MEF2C and its topological organization in neuronal models

Author:

Mohajeri Kiana,Yadav RachitaORCID,D’haene EvaORCID,Boone Philip M.,Erdin SerkanORCID,Gao DadiORCID,Moyses-Oliveira MarianaORCID,Bhavsar Riya,Currall Benjamin,O’Keefe Kathryn,Lowther Chelsea,Lucente Diane,Burt Nicholas D.,Salani Monica,Larson Matthew,Menten Björn,Tai Derek J.C.,Gusella James F.ORCID,Vergult SarahORCID,Talkowski Michael E.ORCID

Abstract

ABSTRACTPoint mutations and structural variants directly disrupting the coding sequence of MEF2C have been associated with a spectrum of neurodevelopmental disorders (NDDs), while recent studies have also implicated altered noncoding regulation of MEF2C expression in NDDs. However, the impact of haploinsufficiency of MEF2C on neurodevelopmental pathways and synaptic processes is not well understood, nor are the complex mechanisms that govern regulation of MEF2C. To explore the transcriptional and functional changes associated with coding and noncoding structural variants, we generated an allelic series of 204 isogenic iPSC-derived neuronal cell lines harboring CRISPR-engineered mutations that directly delete predominant isoforms of MEF2C, as well as deletions to the boundaries of topologically associating domains (TADs) and chromatin loops encompassing MEF2C. We then performed systematic profiling of mutation-specific alterations to transcriptional signatures, regulatory interactions, chromatin contacts, and electrophysiological effects. Our analyses reveal that direct deletion of MEF2C causes differential expression of genes enriched for neurodevelopmental and synaptic-associated pathways, accompanied by a significant reduction in synaptic firing and synchrony in neurons. By contrast, we observe robust buffering against MEF2C regulatory disruption upon deletion of a distal 5q14.3 TAD and loop boundary; however, homozygous loss of proximal loop boundary resulted in significant down-regulation of MEF2C expression and significantly reduced electrophysiological activity that was comparable to direct MEF2C disruption. Collectively, our findings demonstrate the functional impact of MEF2C haploinsufficiency in human-derived neural models and highlight the complex interactions of gene regulation and chromatin topology that challenge a priori regulatory predictions of structural variant disruption to three-dimensional genome organization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3