Evolution and genetic basis of the plant-penetrating ovipositor, a key adaptation in herbivorous Drosophilidae

Author:

Peláez Julianne N.ORCID,Gloss Andrew D.,Ray Julianne F.,Charboneau Joseph L.M.,Verster Kirsten I.,Whiteman Noah K.ORCID

Abstract

AbstractHerbivorous insects are extraordinarily diverse, yet are found in only one-third of insect orders. This skew may result from barriers to plant colonization, coupled with phylogenetic constraint on plant-colonizing adaptations. Physical barriers have been surmounted through the evolution of key morphological innovations, such as the plant-penetrating ovipositor. Despite their significance, the evolution and genetic basis of such innovations have not been well studied. Ovipositors densely lined with hard bristles have evolved repeatedly in herbivorous lineages within the Drosophilidae. Here, we focus on the evolution of this trait in Scaptomyza, an herbivorous radiation nested in a microbe-feeding clade, sister to Hawaiian Drosophila. Our phylogenetic approach revealed that ovipositor bristle number increased as herbivory evolved. We then dissected the genomic architecture of variation in ovipositor bristle number within S. flava through a genome wide association study. Top associated variants were enriched for transcriptional repressors, and the strongest associations included genes contributing to peripheral nervous system development. Genotyping individual flies replicated the association at a variant upstream of Gαi, a neural development gene, contributing to a gain of 0.58 bristles/major allele. These results suggest that regulatory variation involving conserved developmental genes contributes to a key morphological adaptation required for plant colonization.

Publisher

Cold Spring Harbor Laboratory

Reference83 articles.

1. The Phylogenetic Study of Adaptive Zones: Has Phytophagy Promoted Insect Diversification?

2. Herbivory increases diversification across insect clades

3. Schoonhoven LM , Van Loon B , van Loon JJA , Dicke M. 2005 Insect-Plant Biology. OUP Oxford.

4. insect/plant relationship--an evolutionary perspective;Roy Entomol Soc London Symp,1972

5. Episodic radiations in the fly tree of life

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3