Classification of COVID-19 from Chest X-ray images using Deep Convolutional Neural Networks

Author:

Asif SohaibORCID,Wenhui Yi,Jin Hou,Tao Yi,Jinhai Si

Abstract

AbstractThe COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. A vital step in the combat towards COVID-19 is a successful screening of contaminated patients, with one of the key screening approaches being radiological imaging using chest radiography. This study aimed to automatically detect COVID‐ 19 pneumonia patients using digital chest x‐ ray images while maximizing the accuracy in detection using deep convolutional neural networks (DCNN). The dataset consists of 864 COVID‐ 19, 1345 viral pneumonia and 1341 normal chest x‐ ray images. In this study, DCNN based model Inception V3 with transfer learning have been proposed for the detection of coronavirus pneumonia infected patients using chest X-ray radiographs and gives a classification accuracy of more than 98% (training accuracy of 97% and validation accuracy of 93%). The results demonstrate that transfer learning proved to be effective, showed robust performance and easily deployable approach for COVID-19 detection.

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. WHO. (2020). WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. Available: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-1911-march-2020

2. cdc. (2020). Coronavirus Disease 2019 (COVID-19). Available: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-at-higher-risk.html

3. WHO. (2020, 11 May). Coronavirus disease (COVID-2019) situation reports. Available: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/?gclid=Cj0KCQjw2PP1BRCiARIsAEqv-pTBlRc57bUVrAh6-9j_hkakBVk_n_TkbXjtgjVBcVizs7h83yH7YUEaAoVHEALw_wcB

4. J. H. U. a. Medicine . (2020). COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) Available: https://coronavirus.jhu.edu/map.html

5. W. Wang et al., “Detection of SARS-CoV-2 in Different Types of Clinical Specimens,” (in eng), JAMA, 2020/03// 2020.

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3