Using optimal control to understand complex metabolic pathways

Author:

Tsiantis NikolaosORCID,Banga Julio R.ORCID

Abstract

AbstractBackgroundWe revisit the idea of explaining and predicting dynamics in biochemical pathways from first-principles. A promising approach is to exploit optimality principles that can be justified from an evolutionary perspective. In the context of the cell, several previous studies have explained the dynamics of simple metabolic pathways exploiting optimality principles in combination with dynamic models, i.e. using an optimal control framework. For example, dynamics of gene expression in small metabolic models can be explained assuming that cells have developed optimal adaptation strategies. Most of these works have considered rather simplified representations, such as small linear pathways, or reduced networks with a single branching point.ResultsHere we consider the extension of this approach to more realistic scenarios, i.e. biochemical pathways of arbitrary size and structure. We first show that exploiting optimality principles for these networks poses great challenges due to the complexity of the associated optimal control problems. Second, in order to surmount such challenges, we present a computational framework based on multicriteria optimal control which has been designed with scalability and efficiency in mind, extending several recent methods. This framework includes mechanisms to avoid common pitfalls, such as local optima, unstable solutions or excessive computation time. We illustrate its performance with several case studies considering the central carbon metabolism of S. cerevisiae and B. subtilis. In particular, we consider metabolic dynamics during nutrient shift experiments.ConclusionsWe show how multi-objective optimal control can be used to predict temporal profiles of enzyme activation and metabolite concentrations in complex metabolic pathways. Further, we show how the multicriteria approach allows us to consider general cost/benefit trade-offs that have been likely favored by evolution. In this study we have considered metabolic pathways, but this computational framework can also be applied to analyze the dynamics of other complex pathways, such as signal transduction networks.

Publisher

Cold Spring Harbor Laboratory

Reference158 articles.

1. Systems interface biology;Journal of the Royal Society Interface,2006

2. DiStefano III J. Dynamic systems biology modeling and simulation. Academic Press; 2015.

3. Why model?;Frontiers in physiology,2014

4. Feedback dynamics and cell function: Why systems biology is called Systems Biology;Molecular BioSystems,2005

5. Physicochemical modelling of cell signalling pathways

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liver regeneration after partial hepatectomy: the upper optimality estimate;V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics;2023-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3