Spread of COVID-19: Investigation of universal features in real data

Author:

Das Subir K.ORCID

Abstract

We present results on the existence of various common patterns in the growth of the total number of patients affected by COVID-19, a disease acquired through infection by a novel coronavirus, in different countries. For this purpose we propose a scaling model that can have general applicability in the understanding of real data of epidemics. This is analogous to the finite-size scaling, a technique used in the literature of phase transition to identify universality classes. In the disease model, the size of a system is proportional to the volume of the population, within a geographical region, that have been infected at the death of the epidemic or are eventually going to be infected when an epidemic ends. Outcome of our study, for COVID-19, via application of this model, suggests that in most of the countries, after the ‘onset’ of spread, the growths are described by rapid exponential function, for significantly long periods. In addition to accurately identifying this superuniversal feature, we point out that the model is helpful in grouping countries into universality classes, based on the late time behavior, characterized by physical distancing practices, in a natural way. This feature of the model can provide direct comparative understanding of the effectiveness of lockdown-like social measures adopted in different places.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

1. A contribution to the mathematical theory of epidemics

2. R.M. Anderson , in Population Dynamics of Infecctious Diseases: Theory and Applications, edited by R.M. Anderson (Chapman and Hall, NewYork, 1982), pp. 1–37.

3. The Mathematics of Infectious Diseases

4. G. M. Viswanathan , M. G. E. da Luz , E. P. Raposo , and H. E. Stanley , The Physics of Foraging: An Introduction to Random Searches and Biological Encounters (Cambridge University Press, 2011).

5. https://en.wikipedia.org/wiki/COVID-19-pandemic.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3