A DNA translocase operates by cycling between planar and lock-washer structures

Author:

Castillo Juan P.ORCID,Tong Alexander,Tafoya Sara,Jardine Paul J.,Bustamante Carlos

Abstract

Ring ATPases that translocate disordered polymers possess lock-washer architectures that they impose on their substrates during transport via a hand-over-hand mechanism. Here, we investigate the operation of ring motors that transport substrates possessing a preexisting helical structure, such as the bacteriophage ϕ29 dsDNA packaging motor. During each cycle, this pentameric motor tracks one helix strand (the ‘tracking strand’), and alternates between two segregated phases: a dwell in which it exchanges ADP for ATP and a burst in which it packages a full turn of DNA in four steps. We challenge this motor with DNA-RNA hybrids and dsRNA substrates and find that it adapts the size of its burst to the corresponding shorter helical pitches by keeping three of its power strokes invariant while shortening the fourth. Intermittently, the motor loses grip when the tracking strand is RNA, indicating that it makes load-bearing contacts with the substrate that are optimal with dsDNA. The motor possesses weaker grip when ADP-bound at the end of the burst. To rationalize all these observations, we propose a helical inchworm translocation mechanism in which the motor increasingly adopts a lock-washer structure during the ATP loading dwell and successively regains its planar form with each power stroke during the burst.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3