Development and Prospective Validation of a Transparent Deep Learning Algorithm for Predicting Need for Mechanical Ventilation

Author:

Shashikumar Supreeth P.,Wardi Gabriel,Paul Paulina,Paul Paulina,Carlile Morgan,Brenner Laura N,Hibbert Kathryn A,North Crystal M.,Mukerji Shibani S.,Robbins Gregory K.,Shao Yu-Ping,Malhotra Atul,Brandon Westover M.,Nemati Shamim

Abstract

ABSTRACTIMPORTANCEObjective and early identification of hospitalized patients, and particularly those with novel coronavirus disease 2019 (COVID-19), who may require mechanical ventilation is of great importance and may aid in delivering timely treatment.OBJECTIVETo develop, externally validate and prospectively test a transparent deep learning algorithm for predicting 24 hours in advance the need for mechanical ventilation in hospitalized patients and those with COVID-19.DESIGNObservational cohort studySETTINGTwo academic medical centers from January 01, 2016 to December 31, 2019 (Retrospective cohorts) and February 10, 2020 to May 4, 2020 (Prospective cohorts).PARTICIPANTSOver 31,000 admissions to the intensive care units (ICUs) at two hospitals. Additionally, 777 patients with COVID-19 patients were used for prospective validation. Patients who were placed on mechanical ventilation within four hours of their admission were excluded.MAIN OUTCOME(S) and MEASURE(S)Electronic health record (EHR) data were extracted on an hourly basis, and a set of 40 features were calculated and passed to an interpretable deep-learning algorithm to predict the future need for mechanical ventilation 24 hours in advance. Additionally, commonly used clinical criteria (based on heart rate, oxygen saturation, respiratory rate, FiO2 and pH) was used to assess future need for mechanical ventilation. Performance of the algorithms were evaluated using the area under receiver-operating characteristic curve (AUC), sensitivity, specificity and positive predictive value.RESULTSAfter applying exclusion criteria, the external validation cohort included 3,888 general ICU and 402 COVID-19 patients. The performance of the model (AUC) with a 24-hour prediction horizon at the validation site was 0.882 for the general ICU population and 0.918 for patients with COVID-19. In comparison, commonly used clinical criteria and the ROX score achieved AUCs in the range of 0.773 – 0.782 and 0.768 – 0.810 for the general ICU population and patients with COVID-19, respectively.CONCLUSIONS and RELEVANCEA generalizable and transparent deep-learning algorithm improves on traditional clinical criteria to predict the need for mechanical ventilation in hospitalized patients, including those with COVID-19. Such an algorithm may help clinicians with optimizing timing of tracheal intubation, better allocation of mechanical ventilation resources and staff, and improve patient care.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3