A kinetic model of the central carbon metabolism for acrylic acid production inEscherichia coli

Author:

Oliveira Alexandre,Rodrigues Joana,Ferreira EugénioORCID,Rodrigues LígiaORCID,Dias OscarORCID

Abstract

AbstractAcrylic acid is a value-added chemical used in industry to produce diapers, coatings, paints, and adhesives, among many others. Due to its economic importance, there is currently a need for new and sustainable ways to synthesise it. Recently, the focus has been laid in the use ofEscherichia colito express the full bio-based pathway using 3-hydroxypropionate as an intermediary through three distinct pathways (glycerol, malonyl-CoA, andβ-alanine). Hence, the goals of this work were to use COPASI software to assess which of the three pathways has a higher potential for industrial-scale production, from either glucose or glycerol, and identify potential targets to improve the biosynthetic pathways yields.When compared to the available literature, the models developed during this work successfully predict the production of 3-hydroxypropionate, using glycerol as carbon source in the glycerol pathway, and using glucose as a carbon source in the malonyl-CoA andβ-alanine pathways. Finally, this work allowed to identify four potential over-expression targets (glycerol-3-phosphate dehydrogenase (G3pD), acetyl-CoA carboxylase (AccC), aspartate aminotransferase (AspAT), and aspartate carboxylase (AspC)) that should, theoretically, result in higher AA yields.Author summaryAcrylic acid is an economically important chemical compound due to its high market value. Nevertheless, the majority of acrylic acid consumed worldwide its produced from petroleum derivatives by a purely chemical process, which is not only expensive, but it also contributes towards environment deterioration. Hence, justifying the current need for sustainable novel production methods that allow higher profit margins. Ideally, to minimise production cust, the pathway should consist in the direct bio-based production from microbial feedstocks, such as Escherichia coli, but the current yields achieved are still to low to compete with conventional method. In this work, even though the glycerol pathway presented higher yields, we identified the malonyl-CoA route, when using glucose as carbon source, as having the most potential for industrial-scale production, since it is cheaper to implement. Furthermore, we also identified potential optimisation targets for all the tested pathways, that can help the bio-based method to compete with the conventional process.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3