Influence of the artificial sodium saccharin sweetener Sucram® on the microbial community composition in the rumen content and attached to the rumen epithelium in dairy cattle: A pilot study

Author:

Koester Lucas R.,Anderson Chiron J.,Cortes Bienvenido W.,Lyte MarkORCID,Schmitz-Esser StephanORCID

Abstract

AbstractThe products of rumen microbial fermentations are considered essential for animal growth and performance. Changes in these microbial communities can have major effects on animal growth and performance. Saccharin-based artificial sweeteners can be included in livestock diets to increase palatability and encourage feed intake. Despite the importance of the rumen microbial fermentation, little or no research is available regarding how saccharin-based artificial sweeteners affect rumen content and rumen epithelial microbial communities. The aim of this study was to identify changes in both the rumen content and rumen epithelial microbial communities in response to the supplementation of Sucram®, a sodium-saccharin-based sweetener (Pancosma S.A./ADM Groups, Rolle, Switzerland) during standard, non-stress conditions using 16SrRNA gene amplicon sequencing.The rumen epithelial and rumen content microbiota of five Holstein-Friesian milking dairy cattle were compared before (baseline, BL) and after a 28-day supplementation of Sucram®. Illumina MiSeq-based 16S rRNA gene sequencing was conducted, and community analysis revealed significant changes in the abundance of specific phylotypes when comparing BL to Sucram® experimental groups. Sucram® did not have a significant effect on overall rumen microbial community structure between experimental groups. Statistically significant changes in microbial community composition following Sucram® supplementation were observed most consistently across a number of bacterial taxa in the rumen epithelium, while fewer changes were seen in the rumen content. Predicted genomic potentials of several significantly different OTUs were mined for genes related to feed efficiency and saccharin degradation. Operational taxonomic units (OTUs) classified as Prevotella and Sharpea were significantly (p<0.05) increased in samples supplemented with Sucram®, whereas a reduction in abundance was seen for OTUs classified as Treponema, Leptospiraceae, Ruminococcus and methanogenic archaea. This is the first study to report an effect of Sucram® on ruminant microbial communities, suggesting possible beneficial impacts of Sucram® on animal health and performance that may extend beyond increasing feed palatability.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3