Relaxed selection during a recent human expansion

Author:

Peischl S.,Dupanloup I.,Foucal A.,Jomphe M.,Bruat V.,Grenier J.-C.,Gouy A.,Gbeha E.,Bosshard L.,Hip-Ki E.,Agbessi M.,Hodgkinson A.,Vézina H.,Awadalla P.,Excoffier L.

Abstract

AbstractHumans have colonized the planet through a series of range expansions, which deeply impacted genetic diversity in newly settled areas and potentially increased the frequency of deleterious mutations on expanding wave fronts. To test this prediction, we studied the genomic diversity of French Canadians who colonized Quebec in the 17th century. We used historical information and records from ∼4000 ascending genealogies to select individuals whose ancestors lived mostly on the colonizing wave front and individuals whose ancestors remained in the core of the settlement. Comparison of exomic diversity reveals that i) both new and low frequency variants are significantly more deleterious in front than in core individuals, ii) equally deleterious mutations are at higher frequencies in front individuals, and iii) front individuals are two times more likely to be homozygous for rare very deleterious mutations present in Europeans. These differences have emerged in the past 6-9 generations and cannot be explained by differential inbreeding, but are consistent with relaxed selection on the wave front. Modeling the evolution of rare variants allowed us to estimate their associated selection coefficients as well as front and core effective sizes. Even though range expansions had a limited impact on the overall fitness of French Canadians, they could explain the higher prevalence of recessive genetic diseases in recently settled regions. Since we show that modern human populations are experiencing differential strength of purifying selection, similar processes might have happened throughout human history, contributing to a higher mutation load in populations that have undergone spatial expansions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3