Inhibition and excitation shape activity selection: effect of oscillations in a decision-making circuit

Author:

Bose ThomasORCID,Reina AndreagiovanniORCID,Marshall James A.R.ORCID

Abstract

AbstractDecision-making is a complex task and requires adaptive mechanisms that facilitate efficient behaviour. Here, we consider a neural circuit that guides the behaviour of an animal in ongoing binary choice tasks. We adopt an inhibition motif from neural network theory and propose a dynamical system characterized by nonlinear feedback, which links mechanism (the implementation of the neural circuit) and function (increasing reproductive value). A central inhibitory unit influences evidence-integrating excitatory units, which in our terms correspond to motivations competing for selection. We determine the parameter regime where the animal exhibits improved decision-making behaviour, and explain different behavioural outcomes by making the link between bifurcation analysis of the nonlinear neural circuit model and decision-making performance. We find that the animal performs best if it tunes internal parameters of the neural circuit in accordance with the underlying bifurcation structure. In particular, variation of inhibition strength and excitation-over-inhibition ratio have a crucial effect on the decision outcome, by allowing the animal to break decision deadlock and to enter an oscillatory phase that describes its internal motivational state. Our findings indicate that this oscillatory phase may improve the overall performance of the animal in an ongoing foraging task. Our results underpin the importance of an integrated functional and mechanistic study of animal activity selection.Author summaryOrganisms frequently select activities, which relate to economic, social and perceptual decision-making problems. The choices made may have substantial impact on their lives. In foraging decisions, for example, animals aim at reaching a target intake of nutrients; it is generally believed that a balanced diet improves reproductive success, yet little is known about the underlying mechanisms that integrate nutritional needs within the brain. In our study, we address this coupling between physiological states and a decision-making circuit in the context of foraging decisions. We consider a model animal that has the drive to eat or drink. The motivation to select and perform one of these activities (i.e. eating or drinking), is processed in artificial neuronal units that have access to information on how hungry and thirsty the animal is at the point it makes the decision. We show that inhibitory and excitatory mechanisms in the neural circuit shape ongoing binary decisions, and we reveal under which conditions oscillating motivations may improve the overall performance of the animal. Our results indicate that inefficient or pathological decision-making may originate from suboptimal modulation of excitation and inhibition in the neurobiological network.

Publisher

Cold Spring Harbor Laboratory

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3