Interaction of a sarcolipin pentamer and monomer with the sarcoplasmic reticulum calcium pump, SERCA

Author:

Glaves J. P.,Primeau J. O.,Gorski P. A.,Espinoza-Fonseca L. M.,Lemieux M. J.,Young H. S.

Abstract

ABSTRACTThe sequential rise and fall of cytosolic calcium underlies the contraction-relaxation cycle of muscle cells. While contraction is initiated by the release of calcium from the sarcoplasmic reticulum, muscle relaxation involves the active transport of calcium back into the sarcoplasmic reticulum. This re-uptake of calcium is catalysed by the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), which plays a lead role in muscle contractility. The activity of SERCA is regulated by small membrane protein subunits, most well-known being phospholamban (PLN) and sarcolipin (SLN). SLN physically interacts with SERCA and differentially regulates contractility in skeletal and atrial muscle. SLN has also been implicated in skeletal muscle thermogenesis. Despite these important roles, the structural mechanisms by which SLN modulates SERCA-dependent contractility and thermogenesis remain unclear. Here, we functionally characterized wild-type SLN and a pair of mutants, Asn4-Ala and Thr5-Ala, which yielded gain-of-function behavior comparable to what has been found for PLN. Next, we analyzed twodimensional crystals of SERCA in the presence of wild-type SLN by electron cryo-microscopy. The fundamental units of the crystals are anti-parallel dimer ribbons of SERCA, known for decades as an assembly of calcium-free SERCA molecules induced by the addition of decavanadate. A projection map of the SERCA-SLN complex was determined to a resolution of 8.5 Å, which allowed the direct visualization of a SLN pentamer. The SLN pentamer was found to interact with transmembrane segment M3 of SERCA, though the interaction appeared to be indirect and mediated by an additional density consistent with a SLN monomer. This SERCA-SLN complex correlated with the ability of SLN to decrease the maximal activity of SERCA, which is distinct from the ability of PLN to increase the maximal activity of SLN. Protein-protein docking and molecular dynamics simulations provided models for the SLN pentamer and the novel interaction between SERCA and a SLN monomer.STATEMENT OF SIGNIFICANCEThis research article describes a novel complex of the sarcoplasmic reticulum calcium pump SERCA and its regulatory subunit sarcolipin. Given the potential role of sarcolipin in skeletal muscle non-shivering thermogenesis, the interactions between SERCA and sarcolipin are of critical importance. Using complementary approaches of functional analysis, electron crystallography, and molecular dynamics simulations, we demonstrate an inherent interaction between SERCA, a sarcolipin monomer, and a sarcolipin pentamer. The interaction involves transmembrane segment M3 of SERCA, which allows sarcolipin to decrease the maximal activity or turnover rate of SERCA. Protein-protein docking and molecular dynamics simulations provided models for the SLN pentamer and the novel interaction between SERCA and a SLN monomer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3