Membrane-associated α-tubulin is less acetylated in postmortem prefrontal cortex from depressed subjects relative to controls: cytoskeletal dynamics, HDAC6 and depression

Author:

Singh Harinder,Chmura Justyna,Bhaumik Runa,Pandey Ghanshyam N.,Rasenick Mark M.ORCID

Abstract

AbstractCytoskeletal proteins and post-translational modifications play a role in mood disorders. Post-translational modifications of tubulin also alter microtubule dynamics. Furthermore, tubulin interacts closely with Gαs, the G-protein responsible for activation of adenylyl cyclase. Postmortem tissue derived from depressed suicide brain showed increased Gαs in lipid-raft domains compared to normal subjects. Gαs, when ensconced in lipid-rafts, couples less effectively with adenylyl cyclase to produce cAMP and this is reversed by antidepressant treatment. A recent in-vitro study demonstrated that tubulin anchors Gαs to lipid-rafts and that increased tubulin acetylation (due to HDAC-6 inhibition) and antidepressant treatment decreased the proportion of Gαs complexed with tubulin. This suggested that deacetylated-tubulin might be more prevalent in depression. This study, examined tubulin acetylation in whole tissue homogenate, plasma-membrane and lipid-raft membrane domains in tissue from normal control (NC) subjects, depressed suicides and depressed non-suicides. While tissue homogenate showed no changes in 〈-tubulin/tubulin acetylation between control, depressed suicides and depressed non-suicides, plasma-membrane associated tubulin showed significant decreases in acetylation in depressed suicides and depressed non-suicides compared to controls. No change was seen in expression of the enzymes responsible for tubulin acetylation or deacetylation. These data suggest that during depression, membrane localized tubulin maintains a lower acetylation state, permitting increased sequestration of Gαs in lipid-raft domains, where it is less likely to couple to adenylyl cyclase for cAMP production. Thus, membrane tubulin may play a role in mood disorders which could be exploited for diagnosis and treatment.Significance StatementThere is little understanding about the molecular mechanisms involved in the development of depression and in severe cases, suicide. Evidence for the role of microtubule modifications in progression of depressive disorders is emerging. These postmortem data provide strong evidence for membrane tubulin modification leading to reduced efficacy of the G protein, Gsα, in depression. This study reveals a direct link between decreased tubulin acetylation in human depression and the increased localization of Gαs in lipid-raft domains responsible for attenuated cAMP signaling. The evidence presented here suggest a novel diagnostic and therapeutic locus for depression.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3