Substrate-dependent accessibility changes in the Na+-dependent C4-dicarboxylate transporter, VcINDY, suggest differential substrate effects in a multistep mechanism

Author:

Sampson Connor D. D.,Stewart Matthew J.,Mindell Joseph A.,Mulligan ChristopherORCID

Abstract

AbstractMembers of thedivalentanionsodiumsymporter (DASS) family (SLC13 in humans) play critical roles in metabolic homeostasis, influencing many processes including fatty acid synthesis, insulin resistance, adiposity, and lifespan determination. DASS transporters catalyse the Na+-driven concentrative uptake of Krebs cycle intermediates and sulfate into cells; disrupting their function can protect against age-related metabolic diseases and can extend lifespan. An inward-facing crystal structure and an outward-facing model of a bacterial DASS family member, VcINDY fromVibrio cholerae, predict an elevator-like transport mechanism involving a large rigid body movement of the substrate binding site. How substrate binding influences the conformational state of VcINDY is currently unknown. Here, we probe the interaction between substrate binding and VcINDY conformation using a site-specific alkylation strategy to probe the solvent accessibility of several broadly distributed positions in VcINDY in the presence and absence of substrates (Na+and succinate). Our findings reveal that accessibility to all positions tested can be modulated by the presence of substrates, with the majority becoming less accessible in the presence of Na+. Mapping these solvent accessibility changes onto the known structures of VcINDY suggests that Na+binding drives the transporter into an as-yet-unidentified intermediate state. We also observe substantial, separable effects of Na+and succinate binding at several amino acid positions suggesting distinct effects of the two substrates. Furthermore, analysis of a solely succinate-sensitive residue indicates that VcINDY binds its substrate with a low affinity and proceeds via an ordered process in which one or more Na+ions must bind prior to succinate. These findings provide insight into the mechanism of VcINDY, which is currently the only structural-characterised representative of the entire DASS family.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3