Chromatin modifiers and recombination factors promote a telomere fold-back structure, that is lost during replicative senescence

Author:

Wagner Tina,Perez-Martinez Lara,Schellhaas René,Barrientos-Moreno MartaORCID,Öztürk Merve,Prado FélixORCID,Butter FalkORCID,Luke BrianORCID

Abstract

AbstractTelomeres adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomeric chromosome conformation capture (Telo-3C) approach to directly analyze telomere folding and its maintenance inS. cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a distinct telomeric chromatin environment is a major requirement for the folding of yeast telomeres. We demonstrate that telomeres are not folded when cells enter replicative senescence, which occurs independently of short telomere length. Indeed, Sir2, Sin3 and Set2 protein levels are decreased during senescence and their absence may thereby prevent telomere folding. Additionally, we show that the homologous recombination machinery, including the Rad51 and Rad52 proteins, as well as the checkpoint component Rad53 are essential for establishing the telomere fold-back structure. This study outlines a method to interrogate telomere-subtelomere interactions at a single unmodified yeast telomere. Using this method, we provide insights into how the spatial arrangement of the chromosome end structure is established and demonstrate that telomere folding is compromised throughout replicative senescence.Author summaryTelomeres are the protective caps of chromosome ends and prevent the activation of a local DNA damage response. In many organisms, telomeres engage in a loop-like structure which may provide an additional layer of end protection. As we still lack insight into the regulation of the folded telomere structure, we used budding yeast to establish a method to measure telomere folding and then study the genetic requirements for its establishment. We found that cells require the homologous recombination machinery as well as components of the DNA damage checkpoint to successfully establish a folded telomere. Through the deletion of telomerase in budding yeast, we investigated how telomere folding was regulated during replicative senescence, a process that occurs in the majority of telomerase negative human cells. During senescence, telomeres gradually shorten and erode until cells stop dividing which is a potent tumor suppressor and prevents unscheduled growth of potential cancer cells. We found, that the folded telomere structure is compromised as part of the cellular senescence response, but not due to telomere shorteningper se.We think, that an altered telomeric chromatin environment during senescence is important to maintain an open state – which may be important for signaling or for repair.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3