Dynamin-like proteins are essential for vesicle biogenesis in Mycobacterium tuberculosis

Author:

Gupta Shamba,Palacios Ainhoa,Khataokar Atul,Weinrick Brian,Lavín Jose L.,Sampedro Leticia,Gil David,Anguita Juan,Menendez M. Carmen,García M. Jesus,Dogra Navneet,Neiditch Matthew B.,Prados-Rosales Rafael,Rodríguez G. Marcela

Abstract

ABSTRACTMycobacterium tuberculosis (Mtb) secretes pathogenicity factors and immunologically active molecules via membrane vesicles. However, nothing is known about the mechanisms involved in mycobacterial vesicle biogenesis. This study investigates molecular determinants of membrane vesicle production in Mtb by analyzing Mtb cells under conditions of high vesicle production: iron limitation and VirR restriction. Ultrastructural analysis showed extensive cell envelope restructuring in association with vesicle release that correlated with downregulation of cell surface lipid biosynthesis and peptidoglycan alterations. Comparative transcriptomics showed common upregulation of the iniBAC operon in association with high vesicle production in Mtb cells. Vesicle production analysis demonstrated that the dynamin-like proteins (DLPs) encoded by this operon, IniA and IniC, are necessary for release of EV by Mtb in culture and in infected macrophages. Isoniazid, a first-line antibiotic, used in tuberculosis treatment, was found to stimulate vesicle release in a DLP-dependent manner. Our results provide a new understanding of the function of mycobacterial DLPs and mechanistic insights into vesicle biogenesis. The findings will enable further understanding of the relevance of Mtb-derived extracellular vesicles in the pathogenesis of tuberculosis and may open new avenues for therapeutic research.IMPORTANCEIron is an essential nutrient that promotes survival and growth of M. tuberculosis, the bacterium that causes human tuberculosis (TB). Limited availability of iron, often encountered in the host environment, stimulates M. tuberculosis to secrete membrane-bound extracellular vesicles containing molecules that may help it evade the immune system. Characterizing the bacterial factors and mechanisms involved in the production of mycobacterial vesicles is important for envisioning ways to interfere with this process. Here, we report the discovery of proteins required by M. tuberculosis for vesicle biogenesis in culture and during host cell infection. We also demonstrate a connection between antibiotic response and extracellular vesicle production. The work provides insights into the mechanisms underlying vesicle biogenesis in M. tuberculosis and permits better understanding of the significance of vesicle production to M. tuberculosis-host interactions and antibiotic stress response.

Publisher

Cold Spring Harbor Laboratory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3