Modular slowing of resting-state dynamic Functional Connectivity as a marker of cognitive dysfunction induced by sleep deprivation

Author:

Lombardo Diego,Cassé-Perrot Catherine,Ranjeva Jean-Philippe,Le Troter Arnaud,Guye Maxime,Wirsich Jonathan,Payoux Pierre,Bartrés-Faz David,Bordet Régis,Richardson Jill C,Felician Olivier,Jirsa Viktor,Blin Olivier,Didic Mira,Battaglia DemianORCID

Abstract

AbstractDynamic Functional Connectivity (dFC) in the resting state (rs) is considered as a correlate of cognitive processing. Describing dFC as a flow across morphing connectivity configurations, our notion of dFC speed quantifies the rate at which FC networks evolve in time. Here we probe the hypothesis that variations of rs dFC speed and cognitive performance are selectively interrelated within specific functional subnetworks.In particular, we focus on Sleep Deprivation (SD) as a reversible model of cognitive dysfunction. We found that whole-brain level (global) dFC speed significantly slows down after 24h of SD. However, the reduction in global dFC speed does not correlate with variations of cognitive performance in individual tasks, which are subtle and highly heterogeneous. On the contrary, we found strong correlations between performance variations in individual tasks –including Rapid Visual Processing (RVP, assessing sustained visual attention)– and dFC speed quantified at the level of functional subnetworks of interest. Providing a compromise between classic static FC (no time) and global dFC (no space), modular dFC speed analyses allow quantifying a different speed of dFC reconfiguration independently for sub-networks overseeing different tasks. Importantly, we found that RVP performance robustly correlates with the modular dFC speed of a characteristic frontoparietal module.HighlightsSleep Deprivation (SD) slows down the random walk in FC space implemented by Dynamic Functional Connectivity (dFC) at rest.Whole-brain level slowing of dFC speed does not selectively correlate with fine and taskspecific changes in performanceWe quantify dFC speed separately for different link-based modules coordinated by distinct regional “meta-hubs”Modular dFC speed variations capture subtle and task-specific variations of cognitive performance induced by SD.Author summaryWe interpreted dynamic Functional Connectivity (dFC) as a random walk in the space of possible FC networks performed with a quantifiable “speed”.Here, we analyze a fMRI dataset in which subjects are scanned and cognitively tested both before and after Sleep Deprivation (SD), used as a reversible model of cognitive dysfunction. While global dFC speed slows down after a sleepless night, it is not a sufficiently sensitive metric to correlate with fine and specific cognitive performance changes. To boost the capacity of dFC speed analyses to account for fine and specific cognitive decline, we introduce the notion of modular dFC speed. Capitalizing on an edge-centric measure of functional connectivity, which we call Meta-Connectivity, we isolate subgraphs of FC describing relatively independent random walks (dFC modules) and controlled by distinct “puppet masters” (meta-hubs). We then find that variations of the random walk speed of distinct dFC modules now selectively correlate with SD-induced variations of performance in the different tasks. This is in agreement with the fact that different subsystems – distributed but functionally distinct– oversee different tasks.The high sensitivity of modular dFC analyses bear promise of future applications to the early detection and longitudinal characterization of pathologies such as Alzheimer’s disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3