Stereo Slant Discrimination of Planar 3D Surfaces: Standard vs. Planar Cross-Correlation

Author:

Oluk Can,Bonnen Kathryn,Burge Johannes,Cormack Lawrence K.,Geisler Wilson S.

Abstract

AbstractBinocular stereo cues are important for discriminating 3D surface orientation, especially at near distances. We devised a single-interval task where observers discriminated the slant of a densely textured planar test surface relative to a textured planar surround reference surface. Although surfaces were rendered with correct perspective, the stimuli were designed so that the binocular cues dominated performance. Slant discrimination performance was measured as a function of the reference slant and the level of uncorrelated white noise added to the test-plane images in the left and right eye. We compared human performance with an approximate ideal observer (planar cross correlation, PCC) and two sub-ideal observers. The PCC observer uses the image in one eye and back projection to predict the test image in the other eye for all possible slants, tilts, and distances. The estimated slant, tilt, and distance are determined by the prediction that most closely matches the measured image in the other eye. The first sub-ideal observer (local PCC, LPCC) applies planar cross correlation over local neighborhoods and then pools estimates across the test plane. The second sub-optimal observer (standard cross correlation, SCC), uses only positional disparity information. We find that the ideal observer (PCC) and the first sub-ideal observer (LPCC) outperform the second sub-ideal observer (SCC), demonstrating the benefits of structural disparities. We also find that all three model observers can account for human performance, if two free parameters are included: a fixed small level of internal estimation noise, and a fixed overall efficiency scalar on slant discriminability.PrecisWe measured human stereo slant discrimination thresholds for accurately-rendered textured surfaces designed so that performance is dominated by binocular-disparity cues. We compared human performance with an approximate ideal observer and two sub-ideal observers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3