A free-living protist that lacks canonical eukaryotic DNA replication and segregation systems

Author:

Salas-Leiva Dayana E.ORCID,Tromer Eelco C.ORCID,Curtis Bruce A.ORCID,Jerlström-Hultqvist JonORCID,Kolisko MartinORCID,Yi ZhenzhenORCID,Salas-Leiva Joan S.ORCID,Gallot-Lavallée LucieORCID,Kops Geert J. P. L.ORCID,Archibald John M.ORCID,Simpson Alastair G. B.ORCID,Roger Andrew J.ORCID

Abstract

AbstractCells must replicate and segregate their DNA with precision. In eukaryotes, these processes are part of a regulated cell-cycle that begins at S-phase with the replication of DNA and ends after M-phase. Previous studies showed that these processes were present in the last eukaryotic common ancestor and the core parts of their molecular systems are conserved across eukaryotic diversity. However, some unicellular parasites, such as the metamonad Giardia intestinalis, have secondarily lost components of the DNA processing and segregation apparatuses. To clarify the evolutionary history of these systems in these unusual eukaryotes, we generated a high-quality draft genome assembly for the free-living metamonad Carpediemonas membranifera and carried out a comparative genomics analysis. We found that parasitic and free-living metamonads harbor a conspicuously incomplete set of canonical proteins for processing and segregating DNA. Unexpectedly, Carpediemonas species are further streamlined, lacking the origin recognition complex, Cdc6 and other replisome components, most structural kinetochore subunits including the Ndc80 complex, as well as several canonical cell-cycle checkpoint proteins. Carpediemonas is the first eukaryote known to have lost this large suite of conserved complexes, suggesting that it has a highly unusual cell cycle and that unlike any other known eukaryote, it must rely on novel or alternative set of mechanisms to carry out these fundamental processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3